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ABSTRACT
In this paper, the propagation of time-harmonic plane waves is investi-
gated in an infinite elastic solid material by employing the modified
Green–Lindsay (MGL) model of generalized thermoelasticity. It is found
that three basic waves consisting of two sets of coupled longitudinal
waves and one independent vertically shear-type (SV-type) wave may
travel with distinct speeds. The sets of coupled waves are found to be dis-
persive, attenuating and influenced by the thermoelastic coupling effect. In
contrast to the Green–Lindsay (GL) as well as the Lord–Shulman (LS) mod-
els, the SV-type wave is not only dispersive in nature but also experiences
attenuation. Reflection phenomenon of an incident coupled longitudinal
wave from stress-free and thermally insulated boundary surface of a ther-
moelastic solid half-space is addressed. Using these boundary conditions,
the formulae for various reflection coefficients and their respective energy
ratios are presented. For a particular model, various graphs are plotted to
analyze the behavior of the phase speeds, reflection coefficients and their
respective energy ratios. The characteristics of employing the MGL model
are discussed by comparing the numerical results obtained for the present
model with those obtained in the case of the GL model.
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Introduction

Over the last five decades, thermoelastic models in which thermal signals propagate at finite vel-
ocity have attracted much attention. The classical coupled thermoelasticity (CTE) model proposed
by Biot [1] with the introduction of the strain-rate term in the classical Fourier’s heat conduction
law leads to a diffusion-type heat conduction model. In this model, although the elastic wave
propagates with finite phase speed, the thermal wave propagates at an infinite phase speed, which
is not possible physically. In order to solve this serious issue, in 1967, Lord and Shulman [2] pro-
posed a generalized thermoelastic model (LS model) based on the Maxwell–Cattaneo [3] general-
ized model of Fourier’s law of heat conduction. After the notable work of Lord and Shulman,
Green and Lindsay [4] added temperature rate among the constitutive variables and developed
another model (GL model), labeled as temperature-rate-dependent generalized thermoelasticity or
generalized thermoelasticity with two relaxation times. Both of these theories predict the finite
speed of propagation of the elastic as well as the thermal wave.

Recently, Yu et al. [5] established a new model of generalized thermoelasticity theoretically by
considering the strain rate term in the Green–Lindsay (GL) model [4] of generalized
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thermoelasticity with the aid of extended thermodynamics. A problem of semi-infinite one-
dimensional thermoelastic medium with traction free at one end and subjected to a temperature
rise using the Laplace transform method is also studied by Yu et al. [5]. They observed that the
strain rate may eliminate the discontinuity of the displacement at the elastic and thermal wave-
fronts. They compared the present model [5] with the GreenNaghdi (GN) models [6,7] and con-
clude that the thermal wave speed of the present model is faster than the GN II model [7], and
slower than the GN III model [6]. They also showed that their new model is free from the jump
discontinuity that occurred in the displacement distribution in the case of GL model, and is safer
in engineering practices than the GN model. Later, Quintanilla [8] reported some qualitative
results for the modified Green–Lindsay (MGL) thermoelasticity [5]. He proved the exponential
decay of the solutions and given a description of the spatial behavior of the solutions of the
modified Green–Lindsay thermoelasticity. He also deduced a result of the continuous dependence
of the solutions with respect to the initial conditions and to the supply terms and established the
exponential stability of the solutions with respect to the time in the case where the supply
terms vanish.

The study of propagation of seismic waves in thermoelastic media is of great importance in
various fields such as earthquakes, geophysics, soil dynamics, seismology etc. Wave phenomenon
in a thermoelastic medium is of great practical importance in various technological and geophys-
ical circumstances. The propagation of waves along with other geophysical and geothermal data
carries information about the structure and distribution of underground magnum. The wave
propagation as part of exploration seismology helps in various economic activities like tracing of
hydrocarbons and other mineral ores which are essential for various developmental activities like
construction of dams, huge buildings, roads, bridges, the design of highways as well as foundation
problems in soil mechanics. The problem of reflection of plane waves has been the subject of sev-
eral investigations. Some of the notable works on waves in thermoelastic media are listed in the
kinds of literature [9–18]. Othman and Song [19–22] discussed some reflection problems of ther-
moelastic waves under different conditions. The reflection of coupled generalized temperature
rate-dependent thermoelastic waves on a half-space was investigated by Gupta et al. [23]. Sing
[24] studied wave propagation in a Green–Naghdi thermoelastic solid with diffusion. Allam et al.
[25] applied GL model on reflection of P and SV-waves from the free surface of thermoelastic
diffusion solid under influence of the electromagnetic field and initial stress. Abd-Alla et al. [26]
also reported the reflection of plane waves from electro-magneto-thermoelastic half-space with a
dual-phase-lag model. Othman et al. [27] investigated the reflection of plane waves from a rotat-
ing magneto-thermoelastic medium with two-temperature and initial stress under three theories.
Biswas and Sarkar [28] derived the solution of the steady oscillation equations in porous thermo-
elastic medium with dual-phase-lag model. They also studied the phase velocity, attenuation coef-
ficient and penetration depth of time-harmonic plane waves in porous thermoelastic medium
with dual-phase-lag. Li et al. [29] investigated the reflection and transmission of elastic waves at
an interface with consideration of couple stress and thermal wave effects. Reflection of generalized
magneto-thermoelastic waves with two temperatures under the influence of thermal shock and
initial stress has been discussed by Abo-Dahab [30]. Recently, Sarkar and Tomar [31] reported
plane waves in nonlocal thermoelastic solid with voids. Waves propagation in dual-phase-lag
thermoelastic materials with voids based on Eringen’s nonlocal elasticity has been reported by
Mondal and Sarkar [32]. Das et al. [33] investigated the reflection of plane waves from the stress-
free isothermal and insulated boundaries of a nonlocal thermoelastic solid.

During our literature review, we noticed that no thermoelastic plane wave reflection problem
has been studied so far in the context of the new modified Green–Lindasy theory [5]. In the pre-
sent investigation, we study the reflection phenomenon of magneto-thermoelastic plane harmonic
waves from the thermally insulated and stress-free surface of a homogeneous, isotropic thermally
conducting solid half-space by employing the MGL theory of generalized thermoelasticity with
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strain rate, proposed by Yu et al. [5]. The thermoelastic coupling effect creates two types of
coupled longitudinal waves which are dispersive as well as exhibit attenuation. Different from the
thermoelastic coupling effect, there also exists one independent vertically shear-type (SV-type)
wave. In contrast to the GL [4] and LS [2] theories of generalized thermoelasticity, the SV-type
wave is not only dispersive in nature but also experiences attenuation. Analytical expressions for
the reflection coefficients and their respective energy ratios for reflected thermoelastic waves are
determined when a coupled longitudinal wave is made incident on the free surface. The paper
concludes with the numerical results on the phase speeds, reflection coefficients and their respect-
ive energy ratios for specific parameter choices. Various graphs have been plotted to analyze the
behavior of these quantities. The characteristics of employing the MGL model are discussed by
comparing the numerical results obtained for the present model with those obtained in the case
of the GL model of generalized thermoelasticity.

Governing equations and formulation of the problem

A thermoelastic process is a coupled dynamical process of an exchange of mechanical energy into
thermal energy and vice-versa under the action of externally applied thermo-mechanical loading
[34]. Such a process is accompanied by strain and temperature changes inside the body all of
which vanish upon the removal of the applied loading. The process can be described in terms of
the physical field variables like temperature, displacement vector and strain tensor.

We shall consider a linear, homogeneous, isotropic, thermally and electrically conducting ther-
moelastic half-space, namely X ¼ fðx, y, zÞ;�1 < x, y < 1, 0 � z < 1g at uniform reference
temperature T0 under the action of a uniform magnetic field of intensity ~H0 acting in the positive
direction of y–axis, so that ~H0 ¼ ð0,H0, 0Þ, where H0 is a constant. Let the origin O of a fixed
rectangular Cartesian coordinate system Oxyz be fixed at a point on the plane boundary z¼ 0
with z–axis pointing vertically downward into X and x–axis is directed along the horizontal direc-
tion (see Figure 1). The y–axis is taken in the direction of the line of intersection of the plane
wave front with the plane surface. The boundary surface z¼ 0 is assumed to be thermally insu-
lated and free from mechanical stresses. Due to the application of magnetic field ~H0, an induced
magnetic field ~h ¼ ð0, h, 0Þ, an induced electric field ~E ¼ ðE1, 0, E3Þ and electric current density
~J ¼ ðJ1, 0, J3Þ are developed in the medium X which satisfy the simplified linearized equations of
electrodynamics of slowly moving continuous media having perfect electrical conductivity in
absence of displacement current [30]:

~J ¼ ~r �~h, (1)

~r �~E ¼ �l0
_~h, (2)

Figure 1. Schematic of the present problem: incident and reflected thermoelastic waves at the free surface z¼ 0.
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~E ¼ �l0ð _~u � ~HÞ, (3)

r �~h ¼ 0, (4)

where ~H ¼ ð0,H0 þ h, 0Þ is the total magnetic field and l0 is the magnetic permeability. The
small effect of temperature gradient on~J is ignored.

The above equations are supplemented by the following set of equations in the context of the
MGL model [5]. Following [5], the basic equations of the MGL model in case of a homogeneous,
isotropic, thermally and electrically conducting elastic medium (in absence of heat source) can be
arranged in the following way (in general Cartesian coordinates system Oxyz):

� The equation of motion:

1þ t0s1
@

@t

� �
½lui, jj þ ðkþ lÞuj, ij� � c 1þ s1

@

@t

� �
H, i þ Fi ¼ q€ui: (5)

� The heat conduction equation in the present context

KHH, ii ¼ qCE 1þ s0
@

@t

� �
_H þ cT0 1þ t1s0

@

@t

� �
_ekk: (6)

� The constitutive relation:

rij ¼ 1þ t0s1
@

@t

� �
ð2leij þ kekkdijÞ � c

�
Hþ s1 _H

�
dij, (7)

where ui are the displacement components, eij ¼ ðui, j þ uj, iÞ=2 are the components the elastic
strain tensor, ekkð¼ uk, kÞ is the dilatation, rij are the components of the elastic stress tensor, Fi
are the components of the Lorentz’s force vector, t is the time, k, l are Lam�e’s constants, c ¼
ð3kþ 2lÞaT is the thermoelastic coupling parameter, aT is the coefficient of linear thermal expan-
sion, Fi are the components of body force vector, q is the mass density, CE is the specific heat at
constant strain, qi are the components of the heat flux vector, g is the entropy, H is the thermo-
dynamic temperature above the reference temperature T0 such that jH=T0j � 1, s0, s1 are the
thermal relaxation parameters such that s1 	 s0 	 0,KH is the thermal conductivity of the mater-
ial of the medium and where t0, t1 are some constant parameters.

Equations (5)–(7) are the complete set of basic field equations in the context of the modified
Green–Lindsay theory of thermoelasticity. Note that in the above equations, a comma followed
by a suffix denotes spatial derivative and a superposed dot stands for time-differentiation. We shall
consider Eqs. (1)–(7) as the basic governing equations for the present study. Equations (1)–(3)
reduce to the particular set of equations for the MGL and the GL models when

� MGL model: t0 ¼ t1 ¼ 1:
� GL model: t0 ¼ t1 ¼ 0:

The Lorentz’s force vector ~F ¼ ðF1, F2, F3Þ is given by

~F ¼ l0ð~J � ~HÞ: (8)

In the case of plane strain problem parallel to the xz–plane, all the field variables may be con-
sidered as functions of x , z and t only. Consequently, the displacement components and the tem-
perature field may have the forms

u1 ¼ uðx, z, tÞ, u2 ¼ vðx, z, tÞ ¼ 0, u3 ¼ wðx, z, tÞ, H ¼ Hðx, z, tÞ:
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Now, from Eqs. (1)–(4) and (8), we get

Fx ¼ l0H
2
0
@e
@x

, Fy ¼ 0, Fz ¼ l0H
2
0
@e
@z

: (9)

Hence, Eqs. (5)–(7) are simplified to

1þ t0s1
@

@t

� �
lr2uþ ðkþ lÞ @e

@x

� �
� c 1þ s1

@

@t

� �
@H
@x

þ l0H
2
0
@e
@x

¼ q
@2u
@t2

, (10)

1þ t0s1
@

@t

� �
lr2wþ ðkþ lÞ @e

@z

� �
� c 1þ s1

@

@t

� �
@H
@z

þ l0H
2
0
@e
@z

¼ q
@2w
@t2

, (11)

KHr2H ¼ qCE 1þ s0
@

@t

� �
@H
@t

þ cT0 1þ t1s0
@

@t

� �
@e
@t

, (12)

rxx ¼ 1þ t0s1
@

@t

� �
2l

@u
@x

þ ke

� �
� c 1þ s1

@

@t

� �
H, (13)

rzz ¼ 1þ t0s1
@

@t

� �
2l

@w
@z

þ ke

� �
� c 1þ s1

@

@t

� �
H, (14)

rxz ¼ l 1þ t0s1
@

@t

� �
@u
@z

þ @w
@x

� �
, (15)

where e ¼ ðexx þ ezzÞ and r2 
 ð@2=@x2 þ @2=@z2Þ:
In order to make the above equations dimensionless, let us introduce the following dimension-

less parameters

ðx0, z0Þ ¼ CLgðx, zÞ, ðu0,w0Þ ¼ CLgðu,wÞ, ðt0, s00, s01Þ ¼ C2
Lgðt, s0, s1Þ ,H0 ¼ cH

qC2
L
, r0ij ¼

rij
qC2

L
,

where C2
L ¼ ðkþ 2lÞ=q is the speed of the classical longitudinal (dilatational) wave and g ¼

qCE=KH is the thermal viscosity.
With the help of the above variables, Eqs. (10)–(15) can be re-written as follows (we omit the

primes for convenience):

1þ t0s1
@

@t

� �
b2r2uþ ð1� b2Þ @e

@x

� �
� 1þ s1

@

@t

� �
@H
@x

þ RM
@e
@x

¼ @2u
@t2

, (16)

1þ t0s1
@

@t

� �
b2r2wþ ð1� b2Þ @e

@z

� �
� 1þ s1

@

@t

� �
@H
@z

þ RM
@e
@z

¼ @2w
@t2

, (17)

r2H ¼ 1þ s0
@

@t

� �
@H
@t

þ eh 1þ t1s0
@

@t

� �
@e
@t

, (18)

rxx ¼ 1þ t0s1
@

@t

� �
2b2

@u
@x

þ ð1� 2b2Þe
� �

� 1þ s1
@

@t

� �
H, (19)

rzz ¼ 1þ t0s1
@

@t

� �
2b2

@w
@z

þ ð1� 2b2Þe
� �

� 1þ s1
@

@t

� �
H, (20)

rxz ¼ b2 1þ t0s1
@

@t

� �
@u
@z

þ @w
@x

� �
, (21)

where b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðkþ 2lÞp ¼ CS=CL is the ratio of the classical shear wave speed (CS) to the clas-

sical longitudinal wave speed (CL), RM ¼ l0H
2
0=ðkþ 2lÞ is the magnetic pressure number, eH ¼

c2T0=½qCEðkþ 2lÞ� is the dimensionless thermoelastic coupling constant.
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Let us now introduce the displacement potentials / and w through the Helmholtz vector rep-
resentation as

u ¼ @/
@x

� @w
@z

, w ¼ @/
@z

þ @w
@x

: (22)

Substitution of Eq. (22) into Eqs. (16)–(18) yields

1þ RM þ t0s1
@

@t

� �
r2/� @2/

@t2
� 1þ s1

@

@t

� �
H ¼ 0, (23)

b2 1þ t0s1
@

@t

� �
r2w� @2w

@t2
¼ 0, (24)

r2H ¼ 1þ s0
@

@t

� �
@H
@t

þ eH 1þ t1s0
@

@t

� �
@

@t
ðr2/Þ: (25)

Equations (23) and (25) show that the thermal field H is coupled with the displacement poten-
tial / and results two sets of coupled-thermal-elastic waves, namely, a coupled-dilatational elastic
wave (CP-wave) and a coupled-thermal wave (CT-wave). Equation (24) creates one independent
modified shear-type wave (SV-type wave).

Dispersion equation and its solution

To seek the plane harmonic wave solutions of Eqs. (23)–(25) propagating in the positive direction
of a unit vector n with speed c, we take the form of various potentials as [35,36]

f/,H,wg ¼ fa1, a2, a3g expfikðn � r� ctÞg, (26)

where a1, a2, a3 are the constants (possibly complex) representing the coefficients of the wave
amplitudes, i ¼ ffiffiffiffiffiffiffi�1

p
, k is the assigned wavenumber and r is the position vector of a field point.

The quantities k and c are connected with the angular frequency x through the relation x ¼ kc:
Moreover, in view of dissipative character of the thermoelastic medium in question, we consider
c as

c ¼ RðcÞ þ iIðcÞ,
where Rð�Þ and Ið�Þ denote the real and imaginary parts of a complex number, respectively.

For the waves to be physically realistic, we should have

RðcÞ 	 0 and IðcÞ � 0:

Here RðcÞ 	 0 gives the wave speed, while IðcÞ � 0 describes the damping in time of the cor-
responding propagating wave. Also we note that,

� IðcÞ ¼ 0 gives undamped wave in time;
� IðcÞ < 0 corresponds to a damped wave in time, decaying exponentially like exp½kIðcÞt� to

zero as time t ! 1;
� RðcÞ ¼ 0 together with IðcÞ < 0 generates a standing damped wave in time whose amplitude

decays exponentially with time t.

Substituting the solutions (26) into the Eqs. (23)–(25), we geth
ð1þ RM � is1xt0Þk2 � x2

i
a1 þ ð1� is1xÞa2 ¼ 0, (27)

h
b2ð1� is1xt0Þk2 � x2

i
a3 ¼ 0, (28)
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ieHxð1� is0xt1Þk2a1 þ ½k2 � ixð1� is0xÞ�a2 ¼ 0: (29)

The condition for the existence of the non-trivial solutions for a1 and a2 of the system of Eqs.
(27) and (29) yield the following dispersion equationh

ð1þ RM � is1xt0Þk2 � x2
ih
k2 � ixð1� is0xÞ

i
� ieHxð1� is0xt1Þð1� is1xÞk2 ¼ 0: (30)

For MGL model (t0 ¼ t1 ¼ 1), Eq. (30) reduces to

ð1þ RM � is1xÞk4 �
h
ixð1þ eH þ RMÞð1� is0xÞð1� is1xÞ þ x2

i
k2 þ ix3ð1� is0xÞ ¼ 0, (31)

which is the general dispersion relation for the coupled dilatational thermal-elastic waves in the
context of MGL model of generalized thermoelasticity.

In case of GL model (t0 ¼ t1 ¼ 0), we obtain from Eq. (30) that

ð1þ RMÞk4 �
h
ixð1þ RMÞð1� is0xÞ þ ieHxð1� is1xÞ þ x2

i
k2 þ ix3ð1� is0xÞ ¼ 0, (32)

Equation (32) is the dispersion equation of the coupled dilatational thermal-elastic waves
under the GL model as reported by Agarwal [14] in presence of magnetic field effect (RM ¼ 0).
Again, setting s1 ¼ s0 ¼ s and RM ¼ 0, Eq. (32) agrees with the corresponding result of Nayef
and Nemat-Nasser [12].

Moreover, if we substitute s0 ¼ s1 ¼ 0 and neglect the magnetic field effect from the medium,
then the dispersion relation (30) reduces to

k4 � k2
h
x2 þ ixð1þ ehÞ

i
þ ix3 ¼ 0, (33)

which is the dispersion relation for the coupled thermoelastic plane wave propagation under the
CTE theory as reported by Chadwick and Sneddon [9].

So, Eq. (30) is the more general dispersion relation for the coupled magneto-thermal-elastic
waves propagation in the frame of MGL, GL and CT models. For a given x, Eq. (30) gives us
four roots of the form 6k1 and 6k2, for k. Of these four roots, only two roots yield positive val-
ues for RðkÞ with Iðk1, 2Þ 	 0: Hence, there are two distinct traveling coupled-dilatational elastic-
thermal waves of wavenumber k1, 2, namely, a CP-wave and a CT-wave. Both of the waves are
influenced by the strain rate present in the MGL model. The magnetic field also affects these
waves. The phase speeds of the CP- and CT-waves are given by V1, 2 ¼ x=Rðk1, 2Þ: Since the
attenuation coefficients, Iðk1, 2Þ and the phase speeds, V1, 2 are nonlinear functions of x, these
waves suffer attenuation as well as dispersion due to the magneto-thermoelastic character of the
medium considered. The magnetic field and thermoelastic material properties of the medium and
the strain rate term of MGL model influence the dispersion and the attenuation of these waves.
Besides, since the wavenumbers of both the waves are complex, so they are inhomogeneous
waves. The CP- and CT-waves are coupled-dilatational elastic-thermal waves and the coupling is
measured by the following ratio of the amplitude:

a2
a1

� �
j

¼
h
x2 � ð1þ RM � is1xt0Þk2

i
ð1� is1xÞ ¼ eHxð1� is1xt1Þk2jh

xð1� is0xÞ þ ik2j
i ¼ fj ðj ¼ 1, 2Þ: (34)

A look at the Eq. (28) reveals that there exist one SV-type wave of wavenumber k3 ¼
x=½b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� is1xt0
p � whose phase speed V3 is given by

V3 ¼ x
Rðk3Þ : (35)

The expression in (35) clearly shows that the SV-type wave is affected by the presence of the
strain rate in MGL model but it is not affected by the thermal wave. It is also interesting to note

JOURNAL OF THERMAL STRESSES 7



that this wave is dispersive in nature and exhibits attenuation in the case of MGL model in con-
trast to the GL and the CTE models.

Perturbation solution of dispersive waves

The perturbation method has been widely used (Nayfeh and Nemat-Nasser [12], Agarwal [14],
Roy Choudhuri [15, 18], Sharma et al. [37]) to study the wave propagation problems in classical
(coupled) and non-classical (generalized) thermoelastic continua. To explore and delineate the
CP- and CT-waves solutions, we seek solutions of the dispersion equation for small thermoelastic
coupling parameter eH ð� 1Þ: Equation (30) for eH ¼ 0 admits the solutions

J21 ¼ x2

ð1þ RM � is1xt0Þ , J22 ¼ ixð1� is0xÞ: (36)

Thus for the present problem, we conclude that while J1 corresponds to a CP-wave, J2 corre-
sponds to a CT-wave, both modified by the presence of the magnetic field effect and the strain
rate of MGL.

For most of the thermoelastic materials, the parameter eH is very small and therefore, we
develop series expansions in terms of eH for the roots of the Eq. (40) in order to explore the
effect of various parameters of interest on these waves. Thus, for eH � 1, we now set

k2 ¼ k21 ¼ J21 þ dueh þ Oðe2HÞ, (37)

k2 ¼ k22 ¼ J22 þ dheh þ Oðe2HÞ: (38)

Substitute (37) and (38) into (30) and equate the coefficients of like powers of eH, we obtain

du ¼ ixð1� is0xt1Þð1� is1xÞJ21
ð1þ RM � is1xt0ÞðJ21 � J22Þ

, dh ¼ ixð1� is0xt1Þð1� is1xÞJ22
ð1þ RM � is1xt0ÞðJ22 � J21Þ

:

Following Roy Choudhuri [15] and Sharma et al. [37], we may call k1 and k2 as the wavenum-
ber of CP- and CT-waves, respectively. For GL model without magnetic field effect
(t0 ¼ t1 ¼ 0, RM ¼ 0), the solutions k1 and k2 agree with those obtained by Roy Choudhuri [15]
for non-rotating media. Again, setting s1 ¼ s0 ¼ s, RM ¼ 0 and t0 ¼ t1 ¼ 0, we note that k1 and
k2 are exactly the same expressions as reported by Nayfeh and Nemat-Nasser [12]. In case of the
CTE model (s0 ¼ s1 ¼ 0,RM ¼ 0), the expressions k1 and k2 are in complete agreement with
those obtained by Chadwick and Sneddon [9].

Reflection phenomena of magneto-thermoelastic waves

Let a train of CP-wave having amplitude A0 and phase speed V1 is made incident on the free sur-
face z¼ 0 making an angle h0 with the normal to z¼ 0 as shown in Figure 1. Assuming that the
radiation in vacuum is neglected, when it impinges the boundary z¼ 0, three reflection waves in
the medium are created. Suppose the reflected CP-, CT- and SV-type waves make angles h1, h2
and h3, respectively with the positive z–axis. Then the complete structure of the wave field con-
sisting of the incident and reflected waves in the medium X may be written as

/ ¼ A0 exp fik1ðx sin h0 � z cos h0Þ � ixtg þ
X2
j¼1

Aj exp fikjðx sin hj þ z cos hjÞ � ixtg, (39)

H ¼ f1A0 exp fik1ðx sin h0 � z cos h0Þ � ixtg þ
X2
j¼1

fjAj exp fikjðx sin hj þ z cos hjÞ � ixtg, (40)
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w ¼ B1 exp fik3ðx sin h3 þ z cos h3Þ � ixtg: (41)

where A1, A2 and B1 represent the coefficients of amplitudes of the reflected CP-, CT- and SV-
type waves respectively, and fj, j ¼ 1, 2 are listed in Eq. (34). The reflection coefficients are
defined as the ratios of the amplitudes of the reflected to the incident wave and are determined
by the well-defined boundary conditions on the surface z¼ 0.

Boundary conditions: Stress-free thermally insulated surface

We consider the surface z¼ 0 as stress-free and thermally insulated. These conditions may be
mathematically expressed as follows:

Mechanical boundary conation

rzz þ �szz ¼ rxz þ �sxz ¼ 0, at z ¼ 0, (42)

where Maxwell’s electro-magneto stress tensor �sij is given by

�sij ¼ l0½Hihj þ Hjhi � ð~H �~hÞdij�, i, j ¼ 1, 2, 3: (43)

Thermal boundary conation

@H
@z

¼ 0, at z ¼ 0: (44)

In terms of displacement potential functions, (42) can be written in non-dimensional forms as

1þ RM þ s1t0
@

@t

� �
@2/
@z2

þ @2/
@x2

� �
þ 2b2 1þ s1t0

@

@t

� �
@2w
@x@z

� @2/
@x2

� �
� 1þ s1

@

@t

� �
H ¼ 0,

(45)

2
@2/
@x@z

þ @2w
@x2

� @2w
@z2

� �
¼ 0, at z ¼ 0: (46)

In order to satisfy the above boundary conditions at z¼ 0, we apply the Snell’s law which leads
to

k1 sin h0 ¼ k1 sin h1 ¼ k2 sin h2 ¼ k3 sin h3, (47)

or in the form

h0 ¼ h1 and
sin h0
V1

¼ sin h2
V2

¼ sin h3
V3

, (48)

which is often refereed as extended Snell’s law.
Substituting from Eqs. (39)–(41) into (44)–(46) and using the relation (47) or (48), the follow-

ing system of equations for the reflection coefficients RCP ¼ A1=A0, RCT ¼ A2=A0, RSV ¼ B1=A0

is obtained:

a11 a12 a13
a21 a22 a23
a31 a32 0

2
4

3
5 RCP

RCT

RSV

2
4

3
5 ¼

�a11
a21
a31

2
4

3
5, (49)
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where

a11 ¼ x2 � 2b2ð1� is1xt0Þk21 sin2h0, a12 ¼ x2 � 2b2ð1� is1xt0Þk22 sin2h2, a13 ¼ x2 sin 2h3,

a21 ¼ k21 sin 2h0, a22 ¼ k22 sin 2h2, a23 ¼ �k23 cos 2h3,

a31 ¼ f1k1 cos h1, a32 ¼ f2k2 cos h2:

Solving (49), we get the reflection coefficients in explicit forms. It is quite interesting to note that
these reflection coefficients are dependent on the angle of incidence (h0), strain rate of MGL,
magnetic field (H0) and the material properties of the medium. It can also be noted that for
uncoupled thermoelasticity (eH ¼ 0), fj ¼ 0 ðj ¼ 1, 2Þ, and hence there is no reflected CT-wave.
So, in this case RCT ¼ 0 at all angle of incidence h0.

Energy partition

In order to physically justify the analytic expressions of the reflection coefficients in the present
problem, we must verify the energy balance law at the boundary surface z¼ 0. Let us consider
the energy partition between various reflected waves at a surface element of the unit area.
Following [36], the rate of energy transmission, P per unit area at a free surface of a thermoelastic
solid is given by

P ¼ ðrzz þ �szzÞ @w
@t

þ ðrxz þ �sxzÞ @u
@t

: (50)

Note that here, the contribution of thermal energy as well as the interaction energy is negli-
gibly so small compared to the other energy terms. Also even if these energies are accounted in
Eq. (50), these do not change the results qualitatively. However, some physical situations may
arise where the contribution of thermal energy as well as the interaction energy is comparable to
the other energy and in that case it is essential to include these energies in Eq. (50) (cf. Li
et al. [38]).

Let hP0i denotes the average energy carried along with incident CP-wave, hPji ðj ¼ 1, 2Þ,
respectively denote the average energy carried along the reflected CP- and CT-waves and hP3i
denotes the average energy carried along reflected SV-type wave.

We define energy ratio Ej ði ¼ 1, 2, 3Þ corresponding to the j–th reflected wave at z¼ 0 as the
ratio of energy carried along j–th reflected wave to the energy carried along the incident CP-
wave:

Ej ¼
hPji
hP0i : (51)

Thus, for an incident CP-wave having phase speed V1, the analytical expressions of the energy
ratios ECP, ECT and ESV of the reflected CP-, CT- and SV-type waves, respectively are obtained
by using Eqs. (20)–(22), (39)–(41), (43), (50) and (55) as follows:

ECP ¼ �R2
CP, ECT ¼ � tan h0

tan h2
R2
CT , ESV ¼ � tan h0

tan h3
R2
SV , (52)

where 0� < h0 < 90�: Like the amplitude ratios, the energy ratios also depend on h0, material
properties of the thermoelastic medium X, and the amplitude ratios. Since, surface waves are not
involved in the energy conservation principle, so the conservation of energy at the surface z¼ 0
may be stated as:

Esum ¼ jECP þ ECT þ ESV j � 1: (53)
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Numerical example and discussions

In this section, we perform some numerical calculations in order to illustrate the analytical
results. For this purpose, we choose copper like material whose physical data are [33]:

k ¼ 7:76� 1010 Nm�2, l ¼ 3:86� 1010 Nm�2, T0 ¼ 293 K, q ¼ 8954 kgm�3,
CE ¼ 383:1 Jkg�1K�1, KT ¼ 386 Wm�1K�1, aT ¼ 1:78� 10�5 K�1, eH ¼ 0:0168:

Following Othman and Song [21,22], we select the other parameters as: RM ¼ 0:5,
s0 ¼ 0:05, s1 ¼ 0:075:

The effect of the magnetic pressure number RM on the variations of the absolute values of the
reflection coefficients and the energy ratios with the angle of incidence h0 in the range 0� � h0 �
90� has been depicted through Figure 2a–f. In calculation, three different values of the magnetic
pressure number, that is, RM ¼ 0:0, 0:5, 1:0, are set while the Poison’s ratio is prescribed as
r ¼ 0:33: Figure 2a shows that RM produces an increasing effect on the reflection coefficient
jRCPj of the reflected CP-wave. On the contrary, we observe in Figure 2b that the magnetic pres-
sure number RM has a decreasing effect on the reflection coefficients jRCT j and jRSV j of the
reflected CT-wave and the SV-type wave, respectively. It is also noticed that the modulus of RCP

is the highest and that of jRCTj is the least. The maxima of jRCPj are occurred at h0 ¼ 0� and 90�

for each RM. Figure 2b reveals that, all the curves converge to zero at the grazing incidence
(h0 ¼ 90�) in all the cases. It is evident in Figure 2c that jRCT j attains its minima at h0 ¼ 0� (nor-
mal incidence) and 90� 9grazing incidence0 for each RM whereas this quantity attains its max-
imum near h0 ¼ 45� in absence of the magnetic field effect (RM ¼ 0:0). It is observed in Figure
2d–f that the pattern of each of the energy ratio (jECPj, jECTj, jESV j) is qualitatively similar to
the pattern of the corresponding reflection coefficient. It is quite appealing as the energy ratios
are proportional to the square of the corresponding reflection coefficients at each h0. It is also
interesting to note that the energy ratio jECT j of the reflected CT-wave is very small as compared
to the absolute values of the reflection coefficients of the reflected CP- and SV-type waves. Thus
the energy carried along the reflected CT-wave is least which in turn means that the maximum
amount of the incident energy is carried along the reflected CP- and the SV-type waves.

The influence of the Poison’s ratio r upon the variations of the moduli of reflection coeffi-
cients as well as the energy ratios are also interesting [36] and have been presented in Figure
3a–f. In calculation, three different values of the Poison’s ratio, that is, r ¼ 0:30, 0:33, 0:36, are
set while the magnetic pressure number parameter is prescribed as RM ¼ 0:5: It is evident from
these figures that the Poison’s ratio has an increasing effect on jRCPj and jRCT j while it shows a
decreasing effect on jRSV j: The reflection coefficients of the CP-wave and the SV-type wave are
most sensitive to r whereas the reflection coefficient of the CT-wave is most insensitive to r.

The key point noticed from the Figures 2a–c and 3a–c is that the magnetic pressure number
and the Poison’s ratio have a larger effect on jRCPj and jRSV j as compared to jRCT j: This is most
probably due to the following mechanism: as shown in the Eqs. (16) and (17), the magnetic pres-
sure number and the Poison’s ratio are directly presented into the equation of motion instead of
the heat conduction equation to characterize the effects of these parameters on the reflection
coefficients of the various reflected waves, which in turn leads to the consequence that these
parameters barely influences the reflection coefficient, jRCT j of the reflected CT-wave.

Figure 4a–c are plotted to examine the influence of the thermoelastic coupling parameter eH
on the variations of moduli of the reflection coefficients against the angle of incidence h0. In cal-
culation, three different values of the thermoelastic coupling parameter, that is, eH ¼
0:0, 0:0168, 0:0336, are set while the magnetic pressure number and the Poison’s ratio are pre-
scribed as RM ¼ 0:5 and r ¼ 0:33, respectively. The case eH ¼ 0:0 corresponds to the uncoupled
thermoelasticity theory. Similar to the effect of Poison’s ratio, the thermoelastic coupling param-
eter eH has also had an increasing effect on jRCPj and jRCTj while it shows a decreasing effect on
jRSV j: In Figure 2b, it is depicted that for eH ¼ 0:0, the quantity jRCTj vanishes identically in the
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whole range of h0 which in turn means that there will be no reflection of the CT-wave in this
case. This is the verification of a result pointed out in the text.

The key point noticed from Figure 4a–c is that the thermoelastic coupling parameter has a
larger effect on jRCTj as compared to jRCPj and jRSV j: This is most probably due to the following
mechanism: as shown in the Eq. (18) or (25), the thermoelastic coupling parameter is directly
introduced into the heat conduction equation instead of the constitutive relations to characterize

Figure 2. (a–f) Effect of the magnetic pressure number RM on the variations of the reflection coefficients and the energy ratios
for MGL model.
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the effects of the thermoelastic coupling parameter on the reflection coefficients of the various
reflected waves.

Figure 5a is drawn to compare the reflection coefficients jRCPj, jRCT j and jRSV j with respect to
h0. It is shown that the reflection coefficient jRCPj is remaining greater when compared to those

Figure 3. (a–f) Effect of the Poison’s ratio r on the variations of the reflection coefficients and the energy ratios for MGL model.
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of jRCT j and jRSV j: In order to validate the energy balance law at the thermally insulated stress-
free surface z¼ 0, the absolute values of the energy ratios ECP, ECT, ESV carried along the reflected
CP-wave, CT-wave, SV-type wave, respectively and their sum Esum (energy conservation index)
have been calculated for different h0 and presented graphically in Figure 5b when RM ¼ 0:5, r ¼
0:33: The energy ratio jRCT j is plotted after mounting up its original value by 106. It is observed
that the energy conservation index, keeps unit value nearly at each h0 which verifies that the
energy balance law at the free surface z¼ 0 is satisfied. However, Figure 5c reveals a smaller devi-
ation from the unity of the energy conservation index in the presence (RM ¼ 0:5, 1:0) as well as
the absence of the magnetic field ðRM ¼ 0:0Þ: This is attributed to the loss of numerical precision.
The approximate satisfaction of the energy conservation law validates the present numerical
results to a large extent. It is also interesting to evident that in presence of the magnetic field,
more accuracy in the energy conservation index can be expected.

Figure 6a–f is drawn to make a comparison of the reflection coefficients and the correspond-
ing energy ratios of the reflected waves obtained in the case of MGL and GL model with respect
to the angle of incidence h0 when RM ¼ 0:5: We have shown that the reflection coefficient jRCPj
is remaining greater for GL model when compared to that for MGL model while reverse natures
have been observed for jRCT j and jRSV j: As the energy ratios are proportional to the square of
the corresponding reflection coefficients at each h0, it is observed in Figure 6d–f that the pattern
of each of the energy ratio is qualitatively similar to the pattern of the corresponding reflection
coefficient for both the model MGL as well as GL.

Figure 4. (a–c) Effect of the eH on the variations of the reflection coefficients for MGL model.
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Conclusions

In a generalized thermoelastic medium under the MGL theory, there are a total of three kinds of
propagating waves. The thermoelastic coupling generates two sets of coupled longitudinal waves,
namely a CP-wave and a CT-wave. There is also one independent SV-type wave. The reflection
of thermoelastic waves is also studied for the incident CP-wave at a stress-free insulated surface.
A numerical example is provided and the following conclusions can be drawn based on these
numerical results.

1. The thermal field affects only the coupled longitudinal waves. The coupling between the dis-
placement and the temperature fields makes the coupled longitudinal waves not only disper-
sive but also attenuated. Similarly, the introduction of the MGL model makes the SV-type
wave not only dispersive but also attenuated in contrast to the other generalized thermoelas-
tic models (GL, LS etc.).

2. The reflection coefficients and corresponding energy ratios are functions of the magnetic
field, angle of incidence and thermoelastic parameter of the medium.

3. Numerical results show that the reflection coefficients and the respective energy ratios of the
reflected CP- and SV-type waves are significantly affected by the Poison’s ratio. On the con-
trary, eH affects significantly the reflection coefficients of the reflected CT-wave only.

Figure 5. (a–c) Comparison of the (a) reflection coefficients and (b) energy ratios with respect to h0 for MGL model. (c) Variation
of the energy balance index, Esum in absence and presence of the magnetic field in MGL model.
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4. It is observed that the maximum amount of the incident energy is carried along the reflected
CP-wave and the SV-type wave.

5. The numerical results depict that the energy conservation index keeps unity at each angle of
incidence, thus proving the principle of conservation of energy. It is found that there is no
dissipation of energy at the plane boundary surface z¼ 0 during the reflection of the waves.

Figure 6. (a–f) Comparison of the reflection coefficients and the corresponding energy ratios of the reflected waves in the case
of MGL and GL model when RM ¼ 0:5:
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6. To the best knowledge of the authors, there is no published work on reflection of magneto-
thermoelastic waves on the basis of the new MGL theory of generalized thermoelasticity to
date. The present work is very much expected to be useful for investigating various wave
propagation problems, both theoretically and in observation of wave propagation. In particu-
lar, the present work is of geophysical interest for investigations of earthquakes and similar
phenomena in seismology and engineering. Finally, the authors believe that the present the-
oretical and numerical results may provide interesting and significant information for experi-
mental scientists, researchers, and seismologists working on this type of problems.
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